Learning Coexistence Discriminative Features for Multi-Class Object Detection
نویسندگان
چکیده
منابع مشابه
Object Class Recognition Using Discriminative Local Features
In this paper, we introduce a scale-invariant feature selection method that learns to recognize and detect object classes from images of natural scenes. The first step of our method consists of clustering local scale-invariant descriptors to characterize object class appearance. Next, we train part classifiers on the groups, and perform feature selection to determine the most discriminative par...
متن کاملObject Detection and Segmentation using Discriminative Learning
Jingdan Zhang: Object Detection and Segmentation using Discriminative Learning. (Under the direction of Leonard McMillan.) Object detection and segmentation algorithms need to use prior knowledge of objects’ shape and appearance to guide solutions to correct ones. A promising way of obtaining prior knowledge is to learn it directly from expert annotations by using machine learning techniques. P...
متن کاملModels for multi-view object class detection
Learning how to detect objects from many classes in a wide variety of viewpoints is a key goal of computer vision. Existing approaches, however, require excessive amounts of training data. Implementors need to collect numerous training images not only to cover changes in the same object’s shape due to the viewpoint variation, but also to accommodate the variability in appearance among instances...
متن کاملDeep learning for class-generic object detection
We investigate the use of deep neural networks for the novel task of class-generic object detection. We show that neural networks originally designed for image recognition can be trained to detect objects within images, regardless of their class, including objects for which no bounding box labels have been provided. In addition, we show that bounding box labels yield a 1% performance increase o...
متن کاملLearning Region Features for Object Detection
While most steps in the modern object detection methods are learnable, the region feature extraction step remains largely handcrafted, featured by RoI pooling methods. This work proposes a general viewpoint that unifies existing region feature extraction methods and a novel method that is end-to-end learnable. The proposed method removes most heuristic choices and outperforms its RoI pooling co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2852728